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Abstract

A Krylov  model reduction methodology for articulated, multi-flexible body structures

is proposed in this research, This methodology generates recluccd-order  component moclcls

without solving any eigenvalue problcm. The reduced-order system model obtainecl with

these component models matches exactly a specified number of low-frequency moments of

the full-order system. Additionally, all structural modes that contributed significantly to the

input-to-output mapping of the full-order system are closely captured by the reduced-order

system model, The effectiveness of the proposed methodology in generating reduced-order

system models which capture both the time and frequency-domain information of the full-

orcler models, at multiple system configurations, and over a frequency range of interest, has

been successfully validated using a finite-element model of the Galileo spacecraft.

Background and Motivation

To simulate and analyze the

structure, one can use multibody

must supply appropriate models

dynamical motion of an articulated, multi-flexible body

simulation packages such as DISCOS.l To this cncl,  one

for all the flexible components involved, For complex

systems such as the Galileo spacecraft, practical considerations (e.g., simulation time) impose

limits on the number of modes that each flexible body can retain in a given simulation.

Rccluccd-order  models of the system’s flexible components are hence nccclcd.

Model reduction methodologies arc typically used to reduce a “large” systcm moclcl  to

onc that is ‘Lsmall”  enough to facilitate analysis ancl control design, yet “rich”  enough that

it retains the salient features of the original system moclcl. While the literature on moclcl

reclucticm  is vast, works that aclclrcss the model reduction I] CCCIS of articulated, multi-flexible
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body structures are sparse, and have only appeared reccntly,2-8  Here, what is needed is a way

of generating reduced-order component models  which when reassembled produce a rcduccd-

orclcr system model that retains the salient features of the input-to-output mapping of the

full-order model. The Enhanced Projection and Assembly methodology (EP&A),7  ancl the

Component Modes Projection and Assembly Model Reduction Methodology (COMPARE)8

arc two effective ways of performing this task.

In the EP&A method, a composite mode set, consisting of “important” system modes

from all system configurations of interest, and not just from one particular system config~

uration, is first selected, It is then augmented with static correction modes before being

“projected” onto the component models to generate reduced-order component models. To

generate the composite mode set, eigenvalue problems for

multiple system configurations of interest, must be solved

of the method because solving large eigenvalue problems

partially alleviated in the COMPARE methods

the full-order system models, at

repetitively. This is a drawback

can be costly. This difficulty is

The above described model reduction methodologies employed eigen-modes  and static

correction modes in order to preserve both the static gain and the dominant eigen-modes

of the full-order system model in the resultant reduced-order system model, However, with

regard to the accuracy of the system time response, there is no proof that the best possible

basis for reducing the model size is via the system’s eigenvectors. Also, in these methodolo-

gies, after a costly computation was made to generate the eigenvectors, only a selected few

arc actually used while the rest is discarded. This is because the identity of the cigen-mocle

set that dominates the system’s input-to-output mapping is not known till the “whole”

cigcnvalue problem is solved. Noting these shortcomings, we seek a reduction method that

will not recluire solving any eigcnvalue problem, and will generate projection vcct ors that

will actually be used. To this end, Krylov  vectors (to be defined in the sequel) will be used

tc) aclvant age. The effectiveness of the proposed Krylov  model reduction methodology will

bc established using a finite-element moclel  of the Galileo spacecraft.

A Kry]ov  Model Reduction Methodology

Consider a systcm with two flexible components. The undamped motion of component

A is

(1)
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In (l), M;, and K$P are the mass and stiffness mat rix of component A, respectively. Note

that the dimensions of the matrix (or vector) are denoted by its subscripts. For example,

t}lc dimension of the coordinate vector X; is p, uf is a a x 1 control vector, and G#~ is a p x a

control distribution matrix, Likewise, the matrix HAP is an output distribution matrix, ancl

y: is an output vector. Similar equations can also be written for component B,

The  system equations of motion at a particular articulation angle a may bc constructed

using these component equations, and enforcing displacement compatibility conditions at

the component interface (1/F). To this end, let ~(a) =[P$eT  (a), Pq~T (a)]T bc a full-rank

matrix mapping a minimal system state x: into

(2)

where z ~ is a system coordinate (e = p+ q – i). One way to generate the F’(a) matrix will be

described in the sequel (cf. (20-23)). For ease of notation, the dependencies of the matrices

Plfi, P:, etc. on a are dropped hereafter. Substituting xfl = P;, x: and z: = P: ~:~

into (1) and the corresponding equations for component B, pre-multiplying  the resultant

equations by F’P~T and PDT~e , respectively, and summing the resultant equations give

w h e r e  M s = PP$T M~p Pp~ + Pq~T M; P: , K~e = Pp~T K;PPP{ + Pq~T K: Pq~ , G~a =

P:eT’ G;a ; P:;T G:a , H: = [ P:eT H:; , Pq:T H~T ] T . Here, y: == [y~T yf~T]~’,  and ~ ~

m + 1. To arrive at the equation for G~a, we have assumed that U$ = us = uS. Otherwise,

the term G~a u: in (3) should be replacccl by [P~T G#a, P~T G~@] [U$T, u~T]7’.

Combining the Laplace transforms of (3) and (4) produce a system’s input-to-output

transfer function T(s). The Taylor series expansion of the magnitude of T(s) about s = O

is given by

k=o k=o

IIcre,  )7(s)  and U(s) are the Laplace transforms of y: and u:, respcctivcly,  and s (= jw)
K ~ H; (~{f~- 1 M$. )fi~{~,- 1 G~~ is dcfixlc’c]is the Laplace variable. In (5), the t x a matrix l~f~ —
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the kt)’ low-frequency moment of the undamped structural system in Refs. 10 and 11. For

case of notation, L~a is denoted by L k hereafter. These low frequency moments can bc

interpreted using the following identity:

1  ~2k~@0  I =0Lk=—
(2k)! d@ w ,

(6)

for k = 0,1,2,$$. Hence, Lo is the magnitude of the transfer function T(jw) at w = O, i.e.,

the steady state response of the structure due to a unit step input. Similarly, 2Ll is the

scconcl  derivative of T(jw)  with respect to w, evaluated at w = 0, That is, the curvature of

the T(jw)  plot at w = 0,

A system’s low frequency moments are sometimes called its time moments. These

names come from the fact that Lk can be computed as a time-weighted moment of the

syst em’s impulse response function. 12 If the goal of model reduction is to generate a model

that closely captures the time responses of the full-order system model when it is subjcctccl

to low frequency excitations (’low’ relative to the fundamental frequency of the structure),

then, matching the low frequency moments between the full and reduced-order models is

13 The preservation of other meaningful parameters of the full-order model,an effect ivc way.

such as the high frequency moments (Markov  parameters) in the reduced-order model has

also been suggested. See, for example, Ref. 13.

To obtain a reduced-order model that matches the first c (< rank(~~ )) low frequency

moments of the full-order model, consider the following Ritz

z:== Il:cq’: ,

transformation .

(7)

Here, q: is a reduced set of generalized coordinates, and II SC is a projection matrix, given
bylo,l]

I-I:c = [qJl,..., wc_l, I{lH:T]T] . (8)

The first c-1 vectors in ll~c are frequently referred to in the literature as Krylov  vectors,

ancl they can be generated by a simple Krylov  recurrence formula9’14

U’1 = K;.- ‘ G~~ ,
(9)

Qk+]  = lie,‘“s-’&I:  q~ , k==l,.. !,c-2.

4



It is clear from (9) that Krylov  vectors are characterized by both the material properties

of the structure (1{~~ , lhf~ ) and the external load distribution vector (G~.  ). In contrast,

cigenvectors  (used in, e.g., the COMPARE methodology) are just characteristic modes of the

structure, independent of the external loading. The above described Krylov algorithm also

has an interesting physical interpretation. 14 The first Krylov  vector represents the static re-

sponse of the structure to a given load distribution. The dynamic forces which arc neglcctcd

in this static analysis are of the form @, Ll:e Q 1, where LUL represents a typical frequency

component of the loading. This error vector is then applied in the next step as an ‘inertial’

load to generate the next Krylov  vector.

The inclusion of the last vector 1{:,-’ H~T in (8) can be interpreted as follows. Consider

a simplified case with a single input and a single output, i.e., a = t = 1 in (3-4). First, wc
s to the output y: is identical tonote that the transfer function from the control input u~

that from the input y: to u ~, Next, for the later transfer function, the control and output

‘~ and G~~,clistribution matrices are Hte respectively. Hence the term 1{~,- 1 H#’ in (8) is

also a ‘static response’ term, to be included in the projection matrix.

The recluced-order  system model obtained using II~C is given by

G:au:  , (lo)M%: + et  =

Y: = %%: t (11)
\vllcre M: = @: J/&@:c  , I<s = 11~~ .K~eII~c  , G~a = 11~~ G~~ , and Hz = H~lI~c . T h ecc

proof that the first c low frequency moments of the reduced-order model (cf. (10-11)) are

identical to those of the full-order model (cf. (3-4)) is given in Refs. 10 and 11. However,

note that (3-4) as well as (10-11) represent undamped system dynamics. It was found in Ref.

10 that when these undamped Krylov  vectors are used to reduce a damped system model,

the resultant reduced-order model no longer possesses the parameter-matching property.

On the other hand, since the damping levels  of most spacecraft structures are typically very

low (below 0.25%), the error involved when these unclamped Krylov  vectors are appliecl  on

lightly damped structures should be minimal.

A Krylov Model Reduction Methodology for Articulated, Multi-flexible Body

Structures

Let (@~C, A:’) = eig(l~~,  JJ~~ ), The “modal” cquivalcmce  of (10-11) is

1:$: + A;c~~ = @~cTG;au;  , (12)
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(13)

Here, ~~ is the modal  coordinate (q: = q’~c ~~ ), iT$’M~@~c = I:, and A~C = @~~ l{~@~C

contains the undamped eigenvalues  of the Krylov  model along its diagonal. Typically, c is

much smaller than e, Hence, the numerical effort involved in solving this eigenvalue problem

is trivial compared to that involved in solving the original e x e eigenvalue problem.

Not all the modes in A~C contributed significantly to the system’s input-to-output rnaP-

ping. In the proposed method, only b of the c modes are kept while the remaining d (=

c – d) modes are discarded. Ways to select important system’s modes that make signifi-

cant contribution to the system’s input-to-output mapping have been suggested .15’1 G In our

stucly,  we use the Modal Influence Coefficient (MIC) defined in Ref. 7 to rank the relative

importance of the systcm’s  Krylov  modes.

For articulated, multi-flexible bodies structures, a set of “important” Krylov  modes at a

particular system configuration might be different from those of other configurations. Hence,

wc need to decide on a system configuration c_YG at which the selected set of ‘(important”

modes encompasses important modes from, all system configurations, The determination of

~G will be illustrated by an example in the sequel. With this understanding, we have

(14)

where +: and ~~ are the “kept” and ‘{discarded” coordinates, respectively. Before the kept

mode set @~~ is projected onto the component models, it has to be augmented with a static

correction mode(s). This is the same augmentation step that was employed in both the

EP&.4 and COMPARE methodologies. ‘–8 To this end, the system modal equation (12-13)

is clecomposed into its kept and discarded parts:

The static contribution of the discarded mode set @~d can be approximated by a smaller

moclc  Set d’:a , To find @~~, consider the following Ritz transformation
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,

Here ~~ is the gencra]ized  coordinate associated with the augmented mode set @~..  It can

be shown that the static gain of the original system (cf. (12-13)) is exactly captured by a

rcclucecl-orclcr  system model obtained using the mode set [@~~ q’~~]  = [@~~ @~~R~a].6

The augmented, statically complete mode set [@~~ @~.] can now be projected onto the

component models: Z; ~ ~P! ~~~ [@~~ @~a] 4$ ~ ~fl.~$. Here, v = b + a, and ~~ denotes a

rmluccd set of generalized coordinates of component A. The substitution of the last relation

into (1) produces the ‘{constrained’) equations of motion for component A:

(18)

(19)

A similar equation for component B is given in (19),

A reduced-order system model can now be generated

patibility  relations. The I/F relation is given by C$x~ +

using (18-19), and the I/F c.onl-

C:x: = Oi, where Cl and C’/~

arc matrices that establish the constraint relations between the component models, and i

is the number of constraint relations. In terms of the reduced coordinates of component A

and D, wc have

[c:~pvA  c:~’;.l  [$] ~[~inl [$] ==0, (20)

where n = 2v. To construct the reduced-order system model, we partition the ‘tconlpatibil-

ity” matrix Din using the SVD technique

[1P;
[Din] = [~ii] [~ii ,  Oih  ]  pT , (21)

n h

where h = n - i, Z;i is an i x i diagonal matrix with the i singular values of the matrix Dim

along its diagonal, and Oi~ is an i x h null matrix. The partitioned matrix FIn~  in (22) can

be used as follows3’G~7

[14; [1P:
4:

= [Pnh] 4: ~ ~~ 42 ~ (22)

~vherc  ~~ denotes the generalized coordinates of a Krylov  reduced-order system model.
A = P$h #f and @V –Substituting q$V ~~ – F’V~ ~~ into (18-19), pre-multiplying  the resultant

ccluations  by F’VA~~ and P~~T, rcspectivcly,  and summing the resultant equations give

h~}?},j;  + l~;hdf = G;.uZ , (23)

y: = 17 fh$$: , (24)
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AT A PA +  Pvh ~’gVwhen? kf}:~ = ~vAhT ‘Pv “PV vh ‘T ‘T ~~~u~~h.  Similar expressions can also be written

for 1<~,,,  G;.,  and }.:. The steps involved in the Krylov  model reduction methodology are

illustrated in Fig. 1.

As is apparent from the above described steps, the Krylov  model reduction methodology

CIOCS not involve the solving of any cigenvalue problem (except for a %-nail” one used in

the clctcrmination  of the MICS. Sce (12-13)). Using the statically complctc  projection

matrix [@~~ @~a], the low frequency moments of the full-order system model (cf. (3-4))

are also exactly captured by the reassembled Krylov  reduced-order system model (cf. (23-

24)), Additionally, all structural modes that contributed significantly to the input-to-output

mapping of the full-order system are closely captured by the Krylov  models, at all system

configurate ions of interest. The effectiveness of this approach will be validated using a finite-

elemcnt model of the Galileo spacecraft.

Applying the Krylov Model Reduction Methodology on A 28-dof Galileo Mc)del

The effectiveness of the Krylov  vectors-based model reduction methodology is evaluated

using a 28-dof  finite-element model of the Galileo spacecraft. G The model, pictured in Fig. 2,

is meant to resemble the Galileo spacecraft in its overall features. The spacecraft comprises

a 12-clef stator (component A) and a 21-dof  rotor (component B). The rotor may be rotated

with respect to the stator, at 3.15 rprn, using a spin bearing actuator located at their

interface (cf. Al-131 in Fig. 2). The relative orientation of the rotor with respect to the

stator is denoted by the clock angle a, also shown in Fig. 2,

‘l’he equations of motion of the spacecraft at any clock angle o, may be determined using

the equations of motion of both the rotor and the stator, and the interface compatibility

conditions

11 i

2 Cos c1 s ins  O 0 0

Hi

x
y — sin a Cos a 0 0 0 y

= o 0 1 0 0 (25)
;. o 0 0 Cos a sin a ;. “
ev Al o 0 0 – sin o cos a @y ~1

The resultant system model has seven rigid-body modes and 21 flexible modes. The natural

frccluencies  of rotor, stator, and the systcm (at a = 0°) are tabulated in Table 1. As o

changes, some system frequencies incrcasc,  others decrease, while a fcw remain unchangc.

For the purpose of controller design, recluccd-order  systcm models at all configurations

of interest arc ncccled.  Let us use the Krylov  rncthodology  to perform this task. Upon the

removal of the seven rigicl-bocly moclcs, the remaining 21-dof  flexible moclcl  is rcclucecl  using
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10 Krylov  vectors (i.e., c = 10 in (12-13)). That is, wc are interesting in capturing the top

tcn low frequency moments of the full-order system. The MICS (normalizecl by the largest

MIC)  of these Krylov  modes in the recluced-orclcr model arc tabulated in Table 2, from

which we conclude that only four modes (modes 2, 3, 4, and 5) contributed significantly to

the input-to-output mapping. We would have reached the same conclusion have we used a

cliffcrcnt  c.

Table 1 Natural Frequencies of the Full-order Component and System Moclcls (a = 0°)

Mode $1.t.,  (Hz) Q.t.tO,  (Hz) $-l,y.tem  (HZ) ‘“
1-6 0 0 0

7 0.1221 57.253 0
8 1.0579 57.455 0.1106
9 2,8638 225.24 1.0521

10 3.4223 225.31 1.9403__—— _. ..—
11 4.9894 1217.7 2,3975
12 5.2217 1404!7 2,8446  -

——
13 73.425 3.4648
14 75.821 4.9930
15 76.998 5.4793
16 116.50 6.8081
17 116.51 9.2953
18 994.70

.-—
56.060

t--- 1 9
I 1 —.. —

994.70 73.429
I ,

/----- ?7. nnn20 21U8.5 I li).uf3G
!21 2431.9 76.999
z! 144.69 ——
23 144.73 _.—
24 712.64
95 712.65

F
-.
26 1217.7

. .-—.. .
27 1985.9_——
28 2108.5—
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Table 2 Normalized MICS of the Krylov  Model’s Modes (a = 0°, c = 10)

Mode $l~,,l.v  (Hz) MIC Mode ~KAJ.-,
1 0.1106 0.0000 6 9.?95;  ‘ I 0.0153 ---1

MIC
——
1

------

1.0521 0.4305 7 46.199
2.3975 1.0000 8

t--- 0.0000 -1I ..—
14466 0.0000 1

1 1 i

4.9930 0.6039 9
-.. .vu

1204.9
5.4793 I 0.2524 I 10 I

i 0.0000
——-1---- .- 1

1—~
1989.7 0.0000 gI I 1 —-——

A Kept Krylov  modes

The question now is whether the system’s input-to-output mappings at other contlgu-

rations can also be adequately captured by this 4-mode mode set ? To answer that question,

we repeat the MIC calculation at another configuration, with ~ = 60°. The corresponding

normalized MICS are given in Table 3. A comparison of results given in Tables 2 and 3

inclicate

(a)

(b)

the followings :

The Krylov  modes’ frequencies ~K,Y]OV at ~ = 60° differ slightly from those ob-

tained at a = OO. For example, the first flexible mode frequency increases slightly

from 0.1106 to 0.1123 Hz as a varies from O to 60°.

Whereas 4 modes practically captured the input-to-output mapping of the full-

orclcr  system at a = 0° , six modes are needed at a system configuration with a =

60°,

Table 3 Normalized MICS of the Krylov  Model’s Modes (a = 60°)

‘Mocle ~K,Y,Ov  (Hz) MIC Mode ~Krylcw  (Hz) MIC -

1* 0.1123 0.1196 6

- “ !

——
3.5947 0.0820

2’ 1.0520 oo~665 7 ’ 4.9689 1.0000 -

—
P “ -— 1 . 8 1 6 3 0.1149 8* 5.1389 0.7427—- --——.~. 2,4863 0,4082 9

——
7.1271 0.0054——

5 2.8750 0.0343 10
.—. _

9.~079 0.0100.- ———

A Kept Krylov  modes

Based upon these results, we decide on Q’G = 60° as the configuration to perform the

Krylov  reduction and projections, However, it should bc emphasized that other sclectiolls,

such as a~ = 45 or 72° can also be made, producing results similar to those to be given in

the sequel.
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Accorclingly,  wewillkecp  six Krylovmodes  (mode number l-4, and7-8in  Table3)in

the projection mode set, and replace the remaining modes (mode number 5, 6, 9, and 10)

with a static correction mode determined using (15-17). Its frequency, at 3.5939 Hz, is rather

C1OSC to the frequency of mode 6 (3,5947 Hz) in Table 3, which has the highest MIC among

the four discarded modes. However, it should be emphasized that the approach suggested

by (15-17) should be followed instead of, e.g., projecting the top seven highest MIC modes in

‘Ihblc  3. Results obtained using the latter approach, not given here, show poorer matchings

in both the input-to-output frequency responses as well as the low frequency moments.

The selected mode set (with 7 rigid-body and 6+1 flexible modes) is then projected

on both the rotor and st ator models. The resultant projected rotor and st ator moc{cls,

together with the reduced-order system model constructed at o = 60°, have 13, 10, ant]

18 degrees of freedom, respectively. Natural frequencies of these component and system

moclels  are tabulated in Table 4. Note that the six most dominant modes of the full-

cwder  system have been closely captured by the Krylov  reduced-order model (to within

0.17%). Bode plot comparisons of the full-order and Krylov  reduced-order system models,

at various clock angles are depicted in Fig. 3. Here, the actuator input is a negative and a

positive torque T. about the Z-axis of the rotor and the st ator, respectively. The output is

a rotation about the Y-axis passing through Point A. on the stator (cf. Fig. 2). In these

Dode plots, a uniform damping ratio of 0.25~o  was assumed for both the full and recluced-

cn-dcr models. In spite of the fact that no eigenvalue problem was solved in generating

these Krylov  models, they approximate the frequency responses of the full-order models, at

mult iplc s ystcm configurate ions and over a frequency range of interest.

To compare the low frequency moments (L~ ) of the full ancl reducecl-order  models, we

tabulate the values of full-order models’ Lk, k = O 1, ,...,9, at six clock angles in Table 5.

Note that, the magnitudes of L~, k = 3 ,...,9, at a = 0°, are practically zero. The ratios

between these full-order models’ L~ and their Krylov  reduced-order models’ counterparts,

‘k’ull/Lflcducecl$ are tabulated in Table 6. Clearly, the top ten low frequency moments of the

full-orcler  models, at various system configurations of interest, have been captured exactly———
by the corresponding Krylov  models. These results, and those depicted in Fig. 3, clearly

establish the effectiveness of the proposed Krylov  model reduction mcthodcdogy  in preserving

both the time and frequency-clomain information of the full-order model,



Table 4 Natural Freciuencies  of the Projected Component Models and the

System Model (a = 60°) [Krylov Methodology]
Reduced-order

~ Dominant full-order system modes (a = 600). Scc also Table 3.

~ Dominant full-order modes closely captured by the Krylov  model (a = 600).
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Table 5 Low Frequency Moments (L~ ) of the Full-order Models

L~ 0° 15° 30°
—.—

45° 60°

7

72° -

Lo x 10-7 -1.8910 -1.8009 -1.5520 -1,1973 -0.7973 -0.4?39
L1 x 10-8 -0.2396 0.4015 1.8967 3.2367 3.4613 2.5805———
L 2 

X 1 0- 8 -0.0042 1.3059 4.3198 6.9248 7.2071 5.3085 ‘“-
L 3 

X 1 0- 7 -0.0000 0.2705 0.8863 1.4057 1.4478 1.0595
‘–L4 x ~()-7 -0.0000 0.5587

———.——
1.8169 2,8524 2.9075 2,1140————

IJ5 x 10-7 -0.0000 1.1539 3.7246 5.7878 5.8389 4.~182

1,6 X  10-6 -0.0000 0.2383 0.7635 1.1744 1.1726 0.8417
L 7 

X  10-6 -0.0000 0.4922 1,5652 2.3830 2.3548 1.6794 “-

La X 10-6 -0.0000 1,0164 3.2086 4.8353 4.7290 3.3509
1.9 x 10-6 -0.0000 2.0992 6.5775 9.8113 9.4968 6.6861— . . .

Table 6 Ratios of Full to Rccluced  Models’ LOW Frequency Moments, L~’ull /L~educ,d

k
———.—.

a = O“f 15° 30° 45° 60° - 72°
0 1.0000 1.0000 1.0000 1.0000 1!0000

“ - :

1,0000 ‘--

1 1.0000 1.0000 1.0000
——— ..—

1.0000 1.0000 1.0000
2 1.0000 1,0000 --mm-l 1.0000 1.0000 l.oiioo ‘-

3 — 1.0000 1.0000 1.0000 1.0000 1.0000
4

——— —...
— 1,0000 1.0000 1.0000 1$0000 1.OOOO

5
—.. . .

— 1,0000 1.0000 1.0000 1.0000 1,0000
6 — 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1,0000 1.0000 1.0000 l.otioo
8

——.. .
— 1.0000 1.0000 1.0000 1.0000 1.0000.——

9 -. 1.0000 1.0000 1.0000 1.0000 1.00-00 ‘-—.——— .-—

t Both L{Ull and L~edUCed + O for k = 3,...,9. Hence, L~U1,/L~,,uC,d,  k = 3,...,9 are

Unclcfinccl.

Concluding Remarks

13igenvalues  and eigenvectors have a definite value in aiding us in our understanding of

the clynamic behavior of structures. However, the use of exact eigcnvcctors  as the basis for

performing model reduction can bc computational costly, and has not been proven to bc the

best possible approach, A Krylov  vectors-based model reduction methodology which dots

not rccluirc  solving any eigcnvalue problcm  is proposed here.

TJnlikc ci,gcnvcctors, Krylov  vectors can be easily, and reliably generated using rather
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simple algorithm(s). Since Krylov  vectors are functions of the spatial distribution of the

external loading, different Krylov  vectors must be generated for different loacl distributions.

However, this is not a difficult task! Krylov-generated reduced-order component models,

when reassembled, produce a. reduced-order system model that matches a specified number

of low frequency moments of the full-order systcm model. Adclitionally, dominant system

modes’ frequencies are also closely captured. The effectiveness of the Krylov  methodology

in preserving both the time ancl frequency-domain information of the full-order model, at

multiple system configurations and over a frequency range of interest, has been successfully

valiclatccl  using a G alilco moclcl.

Since the rcduccd-order  models will ultimately be used for nonlinear simulations, the

final comparison between the full and reduced-order models should be done in the time do-

main, However, judging by the fact that the reduced-order system moclels  C1OSC1 y reproduced

the frequency responses of their full-order counterparts at the various system configurations,

we expect to obtain good time-domain results with this approach if the articulation rate is

‘tsufflcicntly’>  slow. However, this must be confirmed and quantified via careful nonlin-

ear, time simulations. The effects that increasing slew rate has on the effectiveness of the

methodology is an interesting topic to pursue in the future. Other related research topics

i~~clude:  (i) to investigate the possible removals of high frequency extraneous modes using

the methodology proposed in Ref. 6; and (ii) to assess the merits/demerits of using the

damped Krylov  vectors) 0 (instead of the undamped Krylov  vectors) to reduce the models

of lightly clamped structures.
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Fig, 3 Bode Plot Comparisons of Full and Reduced-order Models
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